Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Ni(2+)-sensitive component of the ERG b-wave from the isolated bovine retina is related to E-type voltage-gated Ca(2+) channels.

BACKGROUND: Voltage-dependent Ca(2+) channels trigger and control important cellular processes like neurotransmitter release and secretion, long-term potentiation, and gene expression in excitable cells. During retinal signal perception and processing, presynaptic Ca(2+) channels facilitate neurotransmitter release in photoreceptors and bipolar neurons, at nonspiking synapses which generate graded potentials.

METHODS: The nature of voltage-gated Ca(2+) channels involved in retinal signal transduction is investigated in the present report by recording the electroretinogram (ERG) from the isolated and perfused bovine retina. Transcripts of the E/R- and T-type Ca(2+) channels are detected by RT-PCR.

RESULTS: Using the Ca(2+) channel antagonists (+/-)-isradipine, NiCl(2), mibefradil, and SNX-482 results in either stimulatory or inhibitory effects on the ERG b-wave amplitude. On the transcript level, mRNA is detected for the E/R-type and a T-type voltage-gated Ca(2+) channel containing Ca(v)2.3 and Ca(v)3.1 as ion-conducting subunits, respectively.

CONCLUSION: Blocking of the E/R-type Ca(2+) channels by NiCl(2) (10 microM) and SNX-482 (30 nM) contributes to the stimulatory effect, whereas antagonism of T-type as well as L-type Ca(2+) channels meditates the inhibitory action on the b-wave amplitude. Thus, a novel function for E/R-type voltage-gated Ca(2+) channels is probably associated with the visual signal transduction in the mammalian retina.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app