Add like
Add dislike
Add to saved papers

Photoelectrochemistry on Ru(II)-2,2'-bipyridine-phosphonate-derivatized TiO2 with the I3-/I- and quinone/hydroquinone relays. Design of photoelectrochemical synthesis cells.

Inorganic Chemistry 2005 March 22
Photocurrent measurements have been made on nanocrystalline TiO2 surfaces derivatized by adsorption of a catalyst precursor, [Ru(tpy)(bpy(PO3H2)2)(OH2)]2+, or chromophore, [Ru(bpy)2 (bpy(PO3H2)2)]2+ (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, and bpy(PO3H2)2 is 2,2'-bipyridyl-4,4'-diphosphonic acid), and on surfaces containing both complexes. This is an extension of earlier work on an adsorbed assembly containing both catalyst and chromophore. The experiments were carried out with the I3-/I- or quinone/hydroquinone (Q/H2Q) relays in propylene carbonate, propylene carbonate-water mixtures, and acetonitrile-water mixtures. Electrochemical measurements show that oxidation of surface-bound Ru(III)-OH2(3+) to Ru(IV)=O(2+) is catalyzed by the bpy complex. Addition of aqueous 0.1 M HClO4 greatly decreases photocurrent efficiencies for adsorbed [Ru(tpy)(bpy(PO3H2)2)(OH2)]2+ with the I3-/I- relay, but efficiencies are enhanced for the Q/H2Q relay in both propylene carbonate-HClO4 and acetonitrile-HClO4 mixtures. The dependence of the incident photon-to-current efficiency (IPCE) on added H2Q in 95% propylene carbonate and 5% 0.1 M HClO4 is complex and can be interpreted as changing from rate-limiting diffusion to the film at low H2Q to rate-limiting diffusion within the film at high H2Q. There is no evidence for photoelectrochemical cooperativity on mixed surfaces containing both complexes with the IPCE response reflecting the relative surface compositions of the two complexes. These results provide insight into the possible design of photoelectrochemical synthesis cells for the oxidation of organic substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app