Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Inactivation of the mitogen-activated protein kinase pathway as a potential target-based therapy in ovarian serous tumors with KRAS or BRAF mutations.

Cancer Research 2005 March 2
Activation of mitogen-activated protein kinase (MAPK) occurs in response to various growth stimulating signals and as a result of activating mutations of the upstream regulators, KRAS and BRAF, which can be found in many types of human cancer. To investigate the roles of MAPK activation in tumors harboring KRAS or BRAF mutations, we inactivated MAPK in ovarian tumor cells using CI-1040, a compound that selectively inhibits MAPK kinase, an upstream regulator of MAPK and thus prevents MAPK activation. Profound growth inhibition and apoptosis were observed in CI-1040-treated tumor cells with mutations in either KRAS or BRAF in comparison with the ovarian cancer cells containing wild-type sequences. Long serial analysis of gene expression identified several differentially expressed genes in CI-1040-treated MPSC1 cells harboring an activating mutation in BRAF (V599L). The most striking changes were down-regulation of cyclin D1, COBRA1, and transglutaminase-2 and up-regulation of tumor necrosis factor-related apoptosis-induced ligand, thrombospondin-1, optineurin, and palladin. These patterns of gene expression were validated in other CI-1040-treated tumor cells based on quantitative PCR. Constitutive expression of cyclin D1 partially reversed the growth inhibitory effect of CI-1040 in MPSC1 cells. Our findings indicate that an activated MAPK pathway is critical in tumor growth and survival of ovarian tumors with KRAS or BRAF mutations and suggest that the CI-1040 induced phenotypes depend on the mutational status of KRAS and BRAF in ovarian tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app