JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Activated RIC, a small GTPase, genetically interacts with the Ras pathway and calmodulin during Drosophila development.

The mammalian Rit and Rin proteins, along with the Drosophila homologue RIC, comprise a distinct and evolutionarily conserved subfamily of Ras-related small GTP-binding proteins. Unlike other Ras superfamily members, these proteins lack a signal for prenylation, contain a conserved but distinct effector domain, and, in the case of Rin and RIC, contain calmodulin-binding domains. To address the physiological role of this Ras subfamily in vivo, activated forms of the Drosophila Ric gene were introduced into flies. Expression of activated RIC proteins altered the development of well-characterized adult structures, including wing veins and photoreceptors of the compound eye. The effects of activated RIC could be mitigated by a reduction in dosage of several genes in the Drosophila Ras cascade, including Son of sevenless (Sos), Dsor (MEK), rolled (MAPK), and Ras itself. On the other hand, reduction of calmodulin exacerbated the defects caused by activated RIC, thus providing the first functional evidence for interaction of these molecules. We conclude that the activation of the Ras cascade may be an important in vivo requisite to the transduction of signals through RIC and that the binding of calmodulin to RIC may negatively regulate this small GTPase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app