JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

UV photolysis of trichloroethylene: product study and kinetic modeling.

Direct UV photolysis of trichloroethylene (TCE) in dilute aqueous solution generated chloride ions as a major end product and several reaction intermediates, such as formic acid, di- and monochloroacetic acids, glyoxylic acid, and, to a lesser extent, mono- and dichloroacetylene, formaldehyde, dichloroacetaldehyde, and oxalic acid. Under prolonged irradiation, these byproducts underwent photolysis, and a high degree of mineralization (approximately 95%) was achieved. TCE decays through the following major pathways: (1) TCE + h nu --> ClCH=C*Cl + Cl*; (2) TCE (H2O) + h nu --> ClCH(OH)-CHCl2; (3) TCE + h nu --> HC[triple bond]CCl + Cl2; (4) TCE + h nu --> ClC[triple bond]CCl + HCl; (5) TCE + Cl* --> Cl2HC-C*Cl2. A kinetic model was developed to simulate the destruction of TCE and the formation and fate of byproducts in aqueous solution under irradiation with polychromatic light. By fitting the experimental data, the quantum yields for the four photolysis steps were predicted as phi(1) = 0.13, phi(2) = 0.1, phi(3) = 0.032, and phi(4) = 0.092, respectively. The reaction mechanism proposed for the photodegradation of TCE accounts for all intermediates that were detected. The agreement between the computed and experimental patterns of TCE and reaction products is satisfactory given the complexity of the reaction mechanism and the lack of photolytic kinetic parameters that are provided in the literature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app