Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecular basis of cardiotoxicity upon cobra envenomation.

Various clinical manifestations leading to death have been documented in most cases of bites caused by venomous snakes. Cobra envenomation is an extremely variable process and known to cause profound neurological abnormalities. The complexity of cobra venom can induce multiple-organ failure, leading to death in case of severe envenomation. Intramuscular administration of Malayan spitting cobra (Naja sputatrix) crude venom at 1 microg/g dose caused death in mice in approximately 3 h. Analysis of gene expression profiles in the heart, brain, kidney, liver and lung revealed 203 genes whose expression was altered by at least 3-fold in response to venom treatment. Of these, 50% were differentially expressed in the heart and included genes involved in inflammation, apoptosis, ion transport and energy metabolism. Electrocardiogram recordings and serum troponin T measurements indicated declining cardiac function and myocardial damage. This not only sheds light on the cardiotoxicity of cobra venom but also reveals the molecular networks affected during envenomation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app