Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

A caspase-resistant mutant of PKC-delta protects keratinocytes from UV-induced apoptosis.

Keratinocyte apoptosis induced by UV radiation is a major protective mechanism from skin photocarcinogenesis. The induction of apoptosis by UV radiation, as well as a variety of genotoxic stimuli, involves the activation of PKC-delta by caspase-3-mediated cleavage in its hinge region, thus generating a constitutively active catalytic fragment. To determine the role of PKC-delta cleavage in UV apoptosis signaling, we introduced a caspase-resistant PKC-delta mutant (D330A) into human keratinocytes by retrovirus transduction. Overexpression of PKC-delta(D330A) protected keratinocytes from UV-induced apoptosis and enhanced long-term survival. PKC-delta(D330A) partially prevented the release of cytochrome c from the mitochondria and the loss of Mcl-1, a key antiapoptotic protein downregulated during UV apoptosis. Thus, the cleavage and activation of PKC-delta are critical components of UV-induced apoptosis in human keratinocytes, and the inactivation of PKC-delta can promote the survival of keratinocytes exposed to UV radiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app