Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhanced peptide secretion by gene disruption of CYM1, a novel protease in Saccharomyces cerevisiae.

Saccharomyces cerevisiae is a widely used host in the production of therapeutic peptides and proteins. Here we report the identification of a novel endoprotease in S. cerevisiae. It is encoded by the CYM1 gene and is specific for the C-terminus of basic residues of heterologously expressed peptides. Gene disruption of CYM1 not only reduced the intracellular proteolysis, but also enhanced the secretion of heterologously expressed peptides such as growth hormone, pro-B-type natriuretic peptide and pro-cholecystokinin. Cym1p resembles metalloendoproteases of the pitrilysin family with the HXXEH(X)E(71-77) catalytic domain as seen in insulysin, nardilysin and human metalloprotease 1. It is a nuclear encoded protease that localizes to mitochondria without a hydrophobic N-terminal signal sequence or a C-terminal tail-anchor. The protease does not require post-translational processing prior to activation and it contains cytosolic activity that processes peptides designated for the secretory pathway prior to translocation into the endoplasmic reticulum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app