Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A proficient enzyme: insights on the mechanism of orotidine monophosphate decarboxylase from computer simulations.

Decarboxylation of orotidine 5'-monophosphate (Omp) to uridine 5'-monophosphate by orotidine 5'-monophosphate decarboxylase (ODCase) is currently the object of vivid debate. Here, we clarify its enzymatic activity with long time scale classical molecular dynamics and hybrid ab initio Car-Parrinello/molecular mechanics simulations. The lack of structural (experimental) information on the ground state of ODCase/Omp complex is overcome by a careful construction of the model and the analysis of three different strains of the enzyme. We find that the ODCase/substrate complex is characterized by a very stable charged network Omp-Lys-Asp-Lys-Asp, which is incompatible with the previously proposed direct decarboxylation driven by a ground-state destabilization. A direct decarboxylation induced by a transition-state electrostatic stabilization is consistent with our findings. The calculated activation free energy for the direct decarboxylation with the formation of a C6 carboanionic intermediate yields an overall rate enhancement by the enzyme (k(cat)/k(wat) = 3.5 x 10(16)) in agreement with experiments (k(cat)/k(wat) = 1.7 x 10(17)). The decarboxylation is accompanied by the movement of a fully conserved lysine residue toward the developing negative charge at the C6 position.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app