Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhaled p38alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice.

The p38 mitogen-activated protein kinase (MAPK) plays a critical role in the activation of inflammatory cells. Therefore, we investigated the antiinflammatory effects of a respirable p38alpha MAPK antisense oligonucleotide (p38alpha-ASO) in a mouse asthma model. A potent and selective p38alpha-ASO was characterized in vitro. Inhalation of aerosolized p38alpha-ASO using an aerosol chamber dosing system produced measurable lung deposition of ASO and significant reduction of ovalbumin (OVA-)-induced increases in total cells, eosinophils, and interleukin 4 (IL-4), IL-5, and IL-13 levels in bronchoalveolar lavage fluid, and dose-dependent inhibition of airway hyperresponsiveness in allergen-challenged mice. Furthermore, inhaled p38alpha-ASO markedly inhibited OVA-induced lung tissue eosinophilia and airway mucus hypersecretion. Quantitative polymerase chain reaction analysis of bronchoalveolar lavage fluid cells and peribronchial lymph node cells showed that p38alpha-ASO significantly reduced p38alpha MAPK mRNA expression. Nose-only aerosol exposure of mice verified the p38alpha-ASO-induced inhibition of OVA-induced pulmonary eosinophilia, mucus hypersecretion, and airway hyperresponsiveness. None of the effects of the p38alpha-ASO were produced by a six-base mismatched control oligonucleotide. These findings demonstrate antisense pharmacodynamic activity in the airways after aerosol delivery and suggest that a p38alpha MAPK ASO approach may have therapeutic potential for asthma and other inflammatory lung diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app