Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stimulation of growth hormone secretion from seabream pituitary cells in primary culture by growth hormone secretagogues is independent of growth hormone transcription.

The action of a number of growth hormone secretagogues (GHS) on growth hormone (GH) secretion and gene expression was studied in a primary culture of pituitary cells isolated from the black seabream Acanthopagrus schlegeli. The peptide GHS employed included growth hormone-releasing peptide (GHRP)-2, ipamorelin, and human ghrelin. The nonpeptide GHS employed included the benzolactam GHS L692,585 and the spiropiperidine GHS L163,540. Secreted GH was measured in the culture medium by an enzyme-linked immunosorbent assay (ELISA) method using a specific antibody against seabream GH. The GH mRNA content in the incubated cells was assessed by reverse transcription polymerase chain reaction (RT-PCR) using a pair of gene-specific primers designed from the cloned black seabream GH cDNA sequence. A dose-dependent stimulation of GH release was demonstrated by all the GHS tested, except human ghrelin, with EC(50) values in the nanomolar range. Simultaneous measurement of GH mRNA levels in the incubated seabream pituitary cells indicated that the GHS-stimulated increase in GH secretion was not paralleled by corresponding changes in GH gene expression. In contrast to the situation previously reported in the rat, no change in GH gene expression was noticed in the seabream pituitary cells even though the time of stimulation by GHS was increased up to 48 h, confirming that the GHS-stimulated GH secretion in seabream is independent of GH gene transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app