JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Molecular mechanisms of neuroplasticity and pharmacological implications: the example of tianeptine.

The hippocampal formation, which expresses high levels of adrenal steroid receptors, is a malleable brain structure that is important for certain types of learning and memory. This structure is also vulnerable to the effects of stress hormones which have been reported to be increased in depressed patients, particularly those with severe depression. The amygdala, a structure that plays a critical role in fear learning, is also an important target of anxiety and stress. Certain animal models of depression involve application of repeated stress. Repeated stress promotes behavioral changes that can be associated with these two brain structures such as impairment of hippocampus-dependent memory and enhancement of fear and aggression, which are likely to reflect amygdala function. At a cellular level, opposite responses in the hippocampus and amygdala are observed, namely, shrinkage of dendrites in hippocampus and growth of dendrites in the lateral amygdala, involving in both cases a remodeling of dendrites. Furthermore, stress-induced suppression of neurogenesis has been noted in dentate gyrus. At a molecular level, the effects of repeated stress in the hippocampus involve excitatory amino acids and the induction of the glial form of the glutamate transporter. Chronic treatment with the antidepressant tianeptine may prevent these effects in hippocampus and amygdala.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app