JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pharmacological and behavioral characteristics of interactions between vigabatrin and conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis.

To characterize the anticonvulsant effects and types of interactions exerted by mixtures of vigabatrin (VGB) and conventional antiepileptic drugs (valproate (VPA), ethosuximide (ESM), phenobarbital (PB), and clonazepam (CZP)) in pentylenetetrazole (PTZ)-induced seizures in mice, the isobolographic analysis for three fixed-ratio combinations of 1 : 3, 1 : 1, and 3 : 1 was used. The adverse-effect profile of the combinations tested, at the doses corresponding to their median effective doses (ED(50)) at the fixed-ratio of 1 : 1 against PTZ-induced seizures, was determined by the chimney (motor performance), step-through passive avoidance (long-term memory), pain threshold (pain sensitivity), and Y-maze (general explorative locomotor activity) tests in mice. Additionally, the observed isobolographic interactions were verified in terms of a pharmacokinetic interaction existence. VGB combined with PB or ESM exerted supra-additive (synergistic) interactions against the clonic phase of PTZ-induced seizures, which was associated with the increment of PB or ESM concentrations in the brains of examined animals. The remaining combinations tested (ie VGB+VPA and VGB+CZP) occurred additive in the PTZ test, which was associated with no significant changes in the brain concentrations of VPA and CZP. None of the examined combinations exerted motor impairment in the chimney test in mice. In the standard variant of passive avoidance task (current of 0.6 mA; 2 s of stimulus duration), the combinations of VGB+CZP and VGB+VPA significantly affected long-term memory in mice. Moreover, VGB in a dose-dependent manner lengthened the latency to the first pain reaction in the pain threshold test in mice. The modified variant of step-through passive avoidance task (current of 0.6 mA; stimulus duration based on the latency from the pain threshold test) revealed no significant changes in the long-term memory of animals for the combinations of VGB+VPA and VGB+CZP; so the observed effects in the standard variant of passive avoidance task were a result of the antinociceptive effects produced by VGB. In the Y-maze test, VGB also, in a dose-dependent manner, increased the general explorative locomotor activity of the animals tested. Similarly, the total number of arm entries in the Y-maze was significantly increased for the combinations of VGB+CZP and VGB+ESM, but not for VGB+PB and VGB+VPA. The application of VGB in combination with PB, ESM, CZP, and VPA suppressed the clonic phase of PTZ-induced seizures, having no harmful or deleterious effects on behavioral functioning of the animals tested, which might be advantageous in further clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app