JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

New insights into the proton-dependent oxygen affinity of Root effect haemoglobins.

A long-standing puzzle with regard to protein structure/function relationships is the proton-dependent modification of haemoglobin (Hb) structure that causes oxygen to be unloaded from Root effect Hbs into the swim bladders and eyes of fish even against high oxygen pressure gradients. Although oxygen unloading in Root effect Hbs has generally been attributed to proton-dependent stabilization of the T-state, protonation of Root effect Hbs can alter their ligand affinities in both R- and T-state conformations and either stabilize the T-state or destabilize the R-state. The C-terminal residues that are so important in the Bohr effect of human Hb appear to be involved in the Root effects of some fish Hbs and not in others, indicating that several evolutionary pathways have resulted in expression of highly pH-dependent Hbs. New data are presented that show surprising similarities in the pH- and anion-dependence of sulfhydryl group reactivity and anaerobic oxidation of human and fish Hbs. The available evidence supports the concept that in both Bohr effect and Root effect Hbs a large steric component acts in addition to quaternary shifts between R and T conformations to regulate ligand affinity. Allosteric effectors moderate these steric effects within both R- and T-state conformations and allow for an elegant match between Hb function and the wide-ranging physiological needs of diverse organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app