JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The endocannabinoid-CB(1) receptor system in pre- and postnatal life.

Recent research suggests that the endogenous cannabinoids ("endocannabinoids") and their cannabinoid receptors have a major influence during pre- and postnatal development. First, high levels of the endocannaboid anandamide and cannabinoid receptors are present in the preimplantation embryo and in the uterus, while a temporary reduction of anandamide levels is essential for embryonal implantation. In women accordingly, an inverse association has been reported between fatty acid amide hydrolase (the anandamide degrading enzyme) in human lymphocytes and miscarriage. Second, CB(1) receptors display a transient presence in white matter areas of the pre- and postnatal nervous system, suggesting a role for CB(1) receptors in brain development. Third, endocannabinoids have been detected in maternal milk and activation of CB(1) receptors appears to be critical for milk sucking by newborn mice, apparently activating oral-motor musculature. Fourth, anandamide has neuroprotectant properties in the developing postnatal brain. Finally, prenatal exposure to the active constituent of marihuana (Delta(9)-tetrahydrocannabinol) or to anandamide affects prefrontal cortical functions, memory and motor and addictive behaviors, suggesting a role for the endocannabinoid CB(1) receptor system in the brain structures which control these functions. Further observations suggest that children may be less prone to psychoactive side effects of Delta(9)-tetrahydrocannabinol or endocannabinoids than adults. The medical implications of these novel developments are far reaching and suggest a promising future for cannabinoids in pediatric medicine for conditions including "non-organic failure-to-thrive" and cystic fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app