Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantification and kinetics of the decline in grass grub endopeptidase activity during initiation of amber disease.

Amber disease in the grass grub (Costelytra zealandica White) (Coleoptera: Scarabaeidae), caused by strains of the bacteria Serratia entomophila or S. proteamaculans, is characterised by cessation of feeding and clearance of the midgut. Analysis of the midgut enzyme activity in diseased grass grub larvae showed that proteolytic activity was reduced to low levels. The endopeptidases, trypsin, elastase, and chymotrypsin, were all markedly reduced in activity whereas the exopeptidases (leucine-aminopeptidase and carboxypeptidase A and B) were much less affected. There was no effect on the non-proteolytic enzymes, esterase and alpha-amylase. Sequential analysis of enzyme levels in the gut during onset of disease showed that proteolytic activity dropped after cessation of feeding and preceded gut clearance. In starved, uninfected larvae enzyme activity levels remained high, indicating that decline in enzyme activity is not associated with absence of food and cessation of feeding, but with the onset of disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app