JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Development and characterization of a recombinant Madin-Darby canine kidney cell line that expresses rat multidrug resistance-associated protein 1 (rMRP1).

AAPS PharmSci 2004 March 10
Multidrug resistance-associated protein 1 (MRP1) is one of the major proteins shown to mediate efflux transport of a broad range of antitumor drugs, glucuronide conjugates, and glutathione, in addition to endogenous substrates. Significant differences in substrate selectivity were reported for murine and human MRP1. As preclinical drug disposition and pharmacokinetics studies are often conducted in rats, we have recently cloned the rat MRP1 (rMRP1) and demonstrated that rMRP1 expressed in transfected cells effluxes calcein, a commonly used fluorescence substrate for human MRP1. To further characterize the rat ortholog of MRP1, we isolated a cell line stably expressing recombinant rMRP1. These cells were tested for their ability to transport calcein and a range of chemotherapeutic drugs. Our results showed that cells expressing rMRP1 consistently efflux calcein at a rate 5-fold greater than control cells. The rMRP1 transfected cells, like their human ortholog, can confer drug resistance to vinca alkaloid (vinblastine and vincristine) and anthracycline drugs (daunorubcin and doxorubicin), and the resistance conferred by the MRP1 can be partially abolished by the MRP-specific inhibitors. The transepithelial permeability due to rMRP1 expression in differentiated Madin-Darby canine kidney cells (MDCK) cells was also investigated. The MRP1 transport activity is directional, as demonstrated by directional vinblastine transport. Collectively, our results demonstrate that the cellular expression of rMRP1, like its human ortholog, could confer resistance to anticancer drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app