CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Anti-GPVI-associated ITP: an acquired platelet disorder caused by autoantibody-mediated clearance of the GPVI/FcRgamma-chain complex from the human platelet surface.

Blood 2004 September 2
Platelet glycoprotein (GP) VI is a 62-kDa membrane glycoprotein that exists on both human and murine platelets in a noncovalent complex with the Fc receptor (FcR) gamma chain. The GPVI/FcRgamma-chain complex serves as the major activating receptor for collagen, as evidenced by observations that platelets genetically deficient in GPVI or the FcRgamma chain are highly refractory to collagen-induced platelet activation. Recently, several different rat anti-murine GPVI monoclonal antibodies, termed JAQs 1, 2, and 3, were produced that had the unique property of "immunodepleting" GPVI from the murine platelet surface and rendering it unresponsive to collagen or GPVI-specific agonists like convulxin or collagen-related peptide (CRP). Herein, we describe a patient with a mild bleeding disorder and a moderately reduced platelet count whose platelets fail to become activated in response to collagen or CRP and inefficiently adhere to and form thrombi on immobilized collagen under conditions of arterial shear. Although the amount of GPVI platelet mRNA and the nucleotide sequence of the GPVI gene were found to be normal, both GPVI and the FcRgamma chain were nearly absent from the platelet surface and were markedly reduced in wholeplatelet detergent lysates. Patient plasma contained an autoantibody that bound specifically to GPVI-positive, normal platelets, and cleared soluble GPVI from the plasma, suggesting that the patient suffers from a rare form of idiopathic thrombocytopenic purpura caused by a GPVI-specific autoantibody that mediates clearance of the GPVI/FcRgamma-chain complex from the platelet surface. Since antibody-induced GPVI shedding now has been demonstrated in both humans and mice, these studies may provide a rationale for developing therapeutic reagents that induce temporary depletion of GPVI for the treatment of clinical thrombosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app