Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cell proliferation and apoptosis: dual-signal hypothesis tested in tuberculous pleuritis using mycobacterial antigens.

Antigens and mitogens have the innate ability to trigger cell proliferation and apoptosis thus exhibiting a dual-signal phenomenon. This dual-signal hypothesis was tested with mycobacterial antigens (PPD and heat killed Mycobacterium tuberculosis - MTB) in tuberculous pleuritis patients where the immune response is protective and compartmentalized. We compared and correlated the cell-cycle analysis and antigen-induced apoptosis in normal and patients' peripheral blood mononuclear cells (PBMCs) and patients' pleural fluid mononuclear cells (PFMCs). In cell-cycle analysis, PFMCs showed good mitotic response with PPD and MTB antigens where 10% and 7% of resting cells entered the S and G2/M phases of cell cycle, respectively. This antigen-induced proliferation of PFMCs correlated well with the lymphocyte transformation test (LTT) results. On the other hand, PFMCs also showed 21% of spontaneous apoptosis, which further increased to 43%, by induction with known apoptotic agent like Dexamethasone (DEX) and the mycobacterial antigens PPD and MTB. Further we demonstrated by anti-CD3 induction experiments that prior activation of cells is prerequisite for them to undergo apoptosis. Our results showed that PPD and MTB antigens induced both cell proliferation and apoptosis in PFMCs, which were pre-sensitized to mycobacterial antigens in vivo. Thus the dual-signal phenomenon was operative against these antigens in tuberculous pleuritis. We also demonstrated that the activated cells are more predisposed to apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app