JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Choline acetyltransferase: regulation and coupling with protein kinase and vesicular acetylcholine transporter on synaptic vesicles.

Both the membrane-bound choline acetyltransferase (MChAT) and soluble ChAT (SChAT) were found to be activated by ATP-mediated protein phosphorylation. ATP activation of MChAT but not SChAT was found to depend on the integrity of proton gradient of synaptic vesicles because conditions disrupting the proton gradient also abolished the activation of MChAT by ATP. Among the kinases studied, Ca2+/calmodulin kinase II is most effective in activation of MChAT. Transport of ACh into synaptic vesicles by vesicular acetylcholine transporter (VAChT) is also proton gradient-dependent; therefore we proposed that there is a functional coupling between ACh synthesis and its packaging into synaptic vesicles. This notion is supported by the following findings: first, the newly synthesized [3H]-ACh from [3H]-choline was taken up much more efficiently than the pre-existing ACh; second, ATP-activation of MChAT was abolished when VAChT was inhibited by the specific inhibitor vesamicol; third, the activity of ChAT was found to be markedly increased when neurons are under depolarizing conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app