JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Aging, muscle activity, and balance control: physiologic changes associated with balance impairment.

Gait & Posture 2003 October
Older adults demonstrate increased amounts of postural sway, which may ultimately lead to falls. The mechanisms contributing to age-related increases in postural sway and falls in the elderly remain unclear. In an effort to understand age-related changes in posture control, we assessed foot center-of-pressure (COP) displacements and electromyographic data from the tibialis anterior, soleus, vastus lateralis, and biceps femoris collected simultaneously during quiet-standing trials from elderly fallers, elderly non-fallers, and healthy young subjects. Both traditional measures of COP displacements and stabilogram-diffusion analysis were used to characterize the postural sway of each group. Regression analyses were used to assess the relationship between the COP measures and muscle activity. Elderly fallers demonstrated significantly greater amounts of sway in the anteroposterior (AP) direction and greater muscle activity during quiet standing compared with the young subjects, while elderly non-fallers demonstrated significantly greater muscle activation and co-activation compared with the young subjects. No significant differences were found between elderly fallers and elderly non-fallers in measures of postural sway or muscle activity. However, greater postural sway in both the AP and mediolateral (ML) directions and trends of greater muscle activity were found in those older adults who demonstrated lower scores on clinical measures of balance. In addition, short-term postural sway was found to be significantly correlated with muscle activity in each of these groups. This work suggests that high levels of muscle activity are a characteristic of age-related declines in postural stability and that such activity is correlated with short-term postural sway. It is unclear whether increases in muscle activity preclude greater postural instability or if increased muscle activity is a compensatory response to increases in postural sway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app