Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparative molecular field analysis and QSAR on substrates binding to cytochrome p450 2D6.

In this study, we utilized comparative molecular field analysis (CoMFA) to gain a better understanding of the steric and electrostatic features of the cytochrome p450 2D6 (CYP2D6) active site. The training set consists of 24 substrates with reported K(M) values from liver microsomal CYP2D6 spanning an activity range of almost three log units. The low energy conformers were fit by root mean square (RMS) to minaprine at the site of metabolism and to the protonated nitrogen. In this manner, we constructed two CoMFA models, one model with a distance constraint and another without. The model with the distance parameter (non-cross-validated R(2)=0.99) was approximately equal to the CoMFA without a distance parameter (non-cross-validated R(2)=0.98). Validation of our CoMFA was accomplished by predicting the K(M) values of 15 diverse CYP2D6 substrates not in the original training set resulting in a predictive R(2)=0.62. Finally, we also pursued correlations of pK(a) and log P with CYP2D6 substrate K(M) in an effort to investigate other physicochemical properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app