Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Targeting of PKCalpha and epsilon in the pituitary: a highly regulated mechanism involving a GD(E)E motif of the V3 region.

Protein kinase C (PKC) has been implicated in the control of intercellular adhesion. Our previous observation demonstrating that activated PKC alpha (PKCalpha is selectively targeted to cell-cell contacts of pituitary GH3B6 cells supports these findings. The relevance of this observation is further strengthened by the present data establishing that this targeting selectivity also occurs in the pituitary gland. Moreover, a new mechanism involved in the control of PKC targeting is unravelled. We demonstrate that a three amino acid motif located in the V3 region of alpha and epsilon (epsilon (GDE/GEE respectively) is essential for the targeting selectivity of these isoforms because: (1) this motif is absent in delta (delta) and mutated in the natural D294GPKCalpha mutant, which do not exhibit such selectivity, and (2) a GEE to GGE mutation abolishes the selectivity of targeting to cell-cell contacts for epsilon, as it does for the D294G PKCalpha mutant. Thus the GD(E)E motif may be part of a consensus sequence able to interact with shuttle and/or anchoring proteins. GFP-tagged deletion mutants also reveal a new function for the pseudosubstrate in the cytoplasmic sequestration. Together, these data underline the complexity of PKC subcellular targeting in the pituitary, determined by the cell-cell contact, at least for alpha and epsilon

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app