JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Molecular determinants of high-affinity drug binding to HERG channels.

Human ether-a-go-go-related gene (HERG) subunits mediate a K+ current that is required for normal repolarization of the cardiac action potential. The unintentional inhibition of HERG currents by numerous medications results in prolongation of the QT interval, as measured on the electrocardiogram, and is associated with increased risk of patients suffering from life-threatening cardiac arrhythmias. QT interval prolongation is considered a major safety concern by worldwide drug regulatory bodies, and early detection of new compounds with this undesirable side effect has become an important objective for pharmaceutical companies. New studies are shedding light on the structural basis of drug binding and the gating-dependent repositioning of key residues in the inner cavity of HERG, which are responsible for the unusual sensitivity of HERG to pharmacological agents. Insights from these studies may help develop novel strategies to reduce the proarrhythmic potential of the next generation of drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app