Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Induction of insulin production in rat pancreatic acinar carcinoma cells by conophylline.

We set up a screening system to detect low-molecular-weight compounds that induce insulin expression in pancreatic acinar carcinoma AR42J cells. They can differentiate into insulin-producing cells with neuron-like morphological change when treated with activin A. We employed this morphological change for the screening of beta-cell inducers among various signal transduction inhibitors. As a result, a vinca alkaloid, conophylline, induced neurite formation at 0.1 approximately 0.3 microg/ml in 72 h, like activin A. Conophylline-treated cells were found to express insulin as measured at both mRNA and protein levels. By RT-PCR analysis, conophylline-treated cells were shown to express neurogenin3 strongly. They also expressed Beta2/NeuroD and Nkx2.2, but not Pax4 and PP. Although activin A induces nuclear translocation of Smad2, conophylline did not. But the latter induced p38 activation, like activin A, as detected by phosphorylation. Pretreatment with a p38-specific inhibitor, SB203580, lowered the conophylline-induced insulin production. Therefore, p38 activation would be involved in the differentiation of AR42J cells into insulin-producing cells. Studies on structure-activity relationship with conophyllidine, conofoline, conophyllinine, and related monomer alkaloids showed that the dimeric aspidosperma structure with the dihydrofuran unit in its center was essential for the differentiation-inducing activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app