Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Male infertility and thiamine-dependent erythroid hypoplasia in mice lacking thiamine transporter Slc19a2.

Thiamine-responsive megaloblastic anemia with diabetes and deafness (TRMA) is an autosomal recessive disease caused by mutations in the high-affinity thiamine transporter gene SLC19A2. To study the role of thiamine transport in the pathophysiology of TRMA syndrome and of each of the component disorders, we created a targeted disruption of the Slc19a2 gene in mice. Slc19a2 -/- mice are viable and females are fertile. Male -/- mice on a pure 129/Sv background are infertile with small testes (testis/body weight=0.13 +/- 0.04 knockout vs. 0.35 +/- 0.05 wild type, P<0.000005). The lack of developing germ cells beyond primary spermatocytes suggests an arrest in spermatogenesis prior to meiosis II. Nuclear chromatin changes indicative of apoptosis are present. No mature sperm are found in the tubules or epididymis. This phenotype suggests a previously unknown role for thiamine transport in spermatogenesis and male fertility. Slc19a2 -/- mice on a pure 129/Sv background develop reticulocytopenia after two weeks on thiamine-depleted chow with a virtual absence of reticulocytes in the peripheral blood (0.12% knockout vs. 2.58% wild type, P=0.0079). Few erythroid precursors are found in the bone marrow. Contrary to human TRMA syndrome, we see no evidence of megaloblastosis or ringed sideroblasts in the bone marrow of Slc19a2 -/- mice in thiamine-replete or thiamine-deficient dietary states. Phenotypic differences between TRMA patients and Slc19a2 -/- mice might be explained by dissimilar tissue expression patterns of the transporter, as well as by differing metabolic needs and possible different species-specific contributions of the related thiamine transporter Slc19a3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app