Add like
Add dislike
Add to saved papers

Sugar induced cell death in yeast is dependent on the rate of sugar phosphorylation as determined by Arabidopsis thaliana hexokinase.

Sugars like glucose and fructose induce death of yeast cells within a few hours, in the absence of additional nutrients to support growth, while cells incubated in water remain viable for weeks. This sugar-induced cell death (SICD) by glucose and fructose required glucose or fructose phosphorylation since yeast cells deficient in hexose phosphorylation did not die. However, when hexose phosphorylation is restored by complementation with Arabidopsis thaliana hexokinase, the cells died. The affinity of A. thaliana hexokinase is about 400 times higher for glucose than for fructose, therefore, A. thaliana hexokinase was further utilized to study the role of hexose phosphorylation in SICD. The rate of SICD of hexokinase-deficient yeast cells expressing A. thaliana hexokinase was significantly slower in fructose than in glucose, indicating that SICD is determined by the rate of hexose phosphorylation. The significance of hexose phosphorylation and its role in SICD is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app