Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Standard thermodynamic formation properties for the adenosine 5'-triphosphate series.

Biochemistry 1992 November 4
The criterion for chemical equilibrium at specified temperature, pressure, pH, concentration of free magnesium ion, and ionic strength is the transformed Gibbs energy, which can be calculated from the Gibbs energy. The apparent equilibrium constant (written in terms of the total concentrations of reactants like adenosine 5'-triphosphate, rather than in terms of species) yields the standard transformed Gibbs energy of reaction, and the effect of temperature on the apparent equilibrium constant at specified pressure, pH, concentration of free magnesium ion, and ionic strength yields the standard transformed enthalpy of reaction. From the apparent equilibrium constants and standard transformed enthalpies of reaction that have been measured in the adenosine 5'-triphosphate series and the dissociation constants of the weak acids and magnesium complexes involved, it is possible to calculate standard Gibbs energies of formation and standard enthalpies of formation of the species involved at zero ionic strength. This requires the convention that the standard Gibbs energy of formation and standard enthalpy of formation for adenosine in dilute aqueous solutions be set equal to zero. On the basis of this convention, standard transformed Gibbs energies of formation and standard transformed enthalpies of formation of adenosine 5'-trisphosphate, adenosine 5'-diphosphate, adenosine 5'-monophosphate, and adenosine at 298.15 K, 1 bar, pH = 7, a concentration of free magnesium ions of 10(-3) M, and an ionic strength of 0.25 M have been calculated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app