Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

1alpha,25-dihydroxyvitamin D(3) (calcitriol) and its analogue, 19-nor-1alpha,25(OH)(2)D(2), potentiate the effects of ionising radiation on human prostate cancer cells.

Radiotherapy with external beam radiation or brachytherapy is an established therapeutic modality for prostate cancer. Approximately 30% of patients with localised prostate cancer relapse at the irradiated site. Secondary effects of ionising radiation (IR), for example, bowel and bladder complications, are common. Thus, the search for biological response modifiers that could potentiate the therapeutic effects of radiation and limit the occurrence of serious side effects is an important task in prostate cancer therapy. 1alpha,25-Dihydroxyvitamin D(3) (calcitriol), the active metabolite of vitamin D, and its analogues are under investigation for the treatment of several malignancies including prostate cancer. Here, we report that 1alpha,25-dihydroxyvitamin D(3) and its less calcaemic analogue 19-nor-1alpha,25-(OH)(2)D(2) (Zemplar) act synergistically with IR to inhibit the growth of the human prostate cancer cells in vitro. 1alpha,25-dihydroxyvitamin D(3) potentiated IR-induced apoptosis of LNCaP cells, and nanomolar doses of 1alpha,25-dihydroxyvitamin D(3) and 19-nor-1alpha,25-(OH)(2)D(2) showed synergistic inhibition of growth of LNCaP cells at radiobiologically relevant doses of IR (1-2 Gy). At higher doses of IR, the combination of 1alpha,25-dihydroxyvitamin D(3) and IR or 19-nor-1alpha,25-(OH)(2)D(2) and IR resulted in moderate antagonism. The synergistic effect at radiobiologically relevant doses of radiation suggests that a combination of 1alpha,25-dihydroxyvitamin D(3) or 19-nor-1alpha,25-(OH)(2)D(2) with IR could permit a reduction in the dose of radiation given clinically and thus potentially reduce treatment-related morbidity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app