Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Identification of a mouse short-chain dehydrogenase/reductase gene, retinol dehydrogenase-similar. Function of non-catalytic amino acid residues in enzyme activity.

We report a mouse short-chain dehydrogenase/reductase (SDR), retinol dehydrogenase-similar (RDH-S), with intense mRNA expression in liver and kidney. The RDH-S gene localizes to chromosome 10D3 with the SDR subfamily that catalyzes metabolism of retinoids and 3 alpha-hydroxysteroids. RDH-S has no activity with prototypical retinoid/steroid substrates, despite 92% amino acid similarity to mouse RDH1. This afforded the opportunity to analyze for functions of non-catalytic SDR residues. We produced RDH-S Delta 3 by mutating RDH-S to remove an "additional" Asn residue relative to RDH1 in its center, to convert three residues into RDH1 residues (L121P, S122N, and Q123E), and to substitute RDH1 sequence G208FKTCVTSSD for RDH-S sequence F208-FLTGMASSA. RDH-S Delta 3 catalyzed all-trans-retinol and 5 alpha-androstane-3 alpha,17 alpha-diol (3 alpha-adiol) metabolism 60-70% as efficiently (Vm/Km) as RDH1. Conversely, substituting RDH-S sequence F208FLTGMASSA into RDH1 produced a chimera (viz. C3) that was inactive with all-trans-retinol, but was 4-fold more efficient with 3 alpha-adiol. A single RDH1 mutation in the C3 region (K210L) reduced efficiency for all-trans-retinol by >1250-fold. In contrast, the C3 area mutation C212G enhanced efficiency with all-trans-retinol by approximately 2.4-fold. This represents a >6000-fold difference in catalytic efficiency for two enzymes that differ by a single non-catalytic amino acid residue. Another chimera (viz. C5) retained efficiency with all-trans-retinol, but was not saturated and was weakly active with 3 alpha-adiol, stemming from three residue differences (K224Q, K229Q, and A230T). The residues studied contribute to the substrate-binding pocket: molecular modeling indicated that they would affect orientation of substrates with the catalytic residues. These data report a new member of the SDR gene family, provide insight into the function of non-catalytic SDR residues, and illustrate that limited changes in the multifunctional SDR yield major alterations in substrate specificity and/or catalytic efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app