Add like
Add dislike
Add to saved papers

Endothelin-1 promotes migration and induces elevation of [Ca2+]i and phosphorylation of MAP kinase of a human extravillous trophoblast cell line.

A highly proliferative, migratory and invasive subpopulation of human placental trophoblasts, known as extravillous trophoblasts (EVT), invades the uterus and its vasculature, to establish an adequate exchange of key molecules between the maternal and fetal circulation. Our earlier studies provided evidence for a positive regulation of migration/invasion of EVT by an autocrine factor IGFII and a paracrine, decidua-derived factor IGFBP1. The present study examined the role played by endothelin (ET)-1, also produced at the fetal-maternal interface, and its receptor subtypes ET(A) and ET(B) in the regulation of human EVT cell functions. We utilized an in vitro propagated EVT cell line (HTR-8/SVneo) which exhibits the phenotypic and functional characteristics of EVT in situ. Reverse transcription-PCR with primers specific for prepro-ET-1, ET(A) and ET(B) cDNAs demonstrated the expression of all these genes in HTR-8/SVneo cells. While proliferation was not influenced, migration of these cells through porous Transwell membranes was stimulated by exogenous ET-1. ET-1 also induced biphasic elevation of cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) consisting of an initial transient followed by a sustained plateau, as measured by spectrofluorimetry. The dependence of the Ca(2+) response on phospholipase C (PLC) was demonstrated by its abrogation in the presence of PLC inhibitor U73122. Furthermore, ET-1 treatment of EVT cells rapidly stimulated phosphorylation of MAP kinase (ERK1/2). By using ET receptor antagonists and agonists, it was shown that both ET(A) and ET(B) receptors were responsible for the effects of ET-1 on migration, [Ca(2+)](i) and MAPK phosphorylation. Thus, ET-1 may represent an autocrine/paracrine mediator of invasive trophoblast function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app