JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

ATP released from astrocytes during swelling activates chloride channels.

ATP release from astrocytes contributes to calcium ([Ca(2+)]) wave propagation and may modulate neuronal excitability. In epithelial cells and hepatocytes, cell swelling causes ATP release, which leads to the activation of a volume-sensitive Cl(-) current (I(Cl,swell)) through an autocrine pathway involving purinergic receptors. Astrocyte swelling is counterbalanced by a regulatory volume decrease, involving efflux of metabolites and activation of I(Cl,swell) and K(+) currents. We used whole cell patch-clamp recordings in cultured astrocytes to investigate the autocrine role of ATP in the activation of I(Cl,swell) by hypo-osmotic solution (HOS). Apyrase, an ATP/ADP nucleotidase, inhibited HOS-activated I(Cl,swell), whereas ATP and the P2Y agonists, ADPbetaS and ADP, induced Cl(-) currents similar to I(Cl,swell). Neither the P2U agonist, UTP nor the P2X agonist, alpha,beta-methylene ATP, were effective. BzATP was less effective than ATP, suggesting that P2X7 receptors were not involved. P2 purinergic antagonists, suramin, RB2, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) reversibly inhibited activation of I(Cl,swell), suggesting that ATP-activated P2Y1 receptors. Thus ATP release mediates I(Cl,swell) in astrocytes through the activation of P2Y1-like receptors. The multidrug resistance protein (MRP) transport inhibitors probenicid, indomethacin, and MK-571 all potently inhibited I(Cl.swell). ATP release from astrocytes in HOS was observed directly using luciferin-luciferase and MK-571 reversibly depressed this HOS-induced ATP efflux. We conclude that ATP release via MRP and subsequent autocrine activation of purinergic receptors contributes to the activation of I(Cl,swell) in astrocytes by HOS-induced swelling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app