Case Reports
Journal Article
Add like
Add dislike
Add to saved papers

"Real" three-dimensional constructive interference in steady-state imaging to discern microneurosurgical anatomy. Technical note.

Three-dimensional (3D) neuroimages are generally considered useful for neurosurgical practice. Nevertheless, neuroimaging modalities such as 3D digital subtraction angiography and 3D computerized tomography angiography are still insufficient because the resulting images fail to delineate neural structures. Complex neurosurgical procedures are mostly performed in the cerebrospinal fluid (CSF) space of the basal cistern, where vessels and neural structures are present along with the lesion. The magnetic resonance (MR) imaging-derived 3D constructive interference in steady-state (CISS) imaging displays the margin between the CSF and neural structures, vessels, and dura mater in detail, in a two-dimensional fashion. The authors know that volume-rendered 3D CISS images would be more useful for surgery than conventional ones. Although the usefulness of "virtual MR image endoscopy" was reported previously, the endoscopic view is different from the operative field because of the perspective being emphasized. Therefore, to simulate surgical views, the authors made 3D neuroimages from a 3D CISS MR sequence by using an advanced computer workstation. After generating volume images, a cutting method was used in the desired plane to visualize the lesion with reference to a multiplanar reformatted image. The authors call these "real" 3D CISS images, and they are more comparable to the operative field. This newly developed method of producing a real 3D CISS image was used in 30 cases and contributed to the understanding of the relationship between a lesion and surrounding structures before attempting neurosurgical procedures, with minimal invasiveness to the patient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app