Add like
Add dislike
Add to saved papers

Altered sinus nodal and atrioventricular nodal function in freely moving mice overexpressing the A1 adenosine receptor.

To investigate whether altered function of adenosine receptors could contribute to sinus node or atrioventricular (AV) nodal dysfunction in conscious mammals, we studied transgenic (TG) mice with cardiac-specific overexpression of the A1 adenosine receptor (A1AR). A Holter ECG was recorded in seven freely moving littermate pairs of mice during normal activity, exercise (5 min of swimming), and 1 h after exercise. TG mice had lower maximal heart rates (HR) than wild-type (WT) mice (normal activity: 437 +/- 18 vs. 522 +/- 24 beats/min, P < 0.05; exercise: 650 +/- 13 vs. 765 +/- 28 beats/min, P < 0.05; 1 h after exercise: 588 +/- 18 vs. 720 +/- 12 beats/min, P < 0.05; all values are means +/- SE). Mean HR was lower during exercise (589 +/- 16 vs. 698 +/- 34 beats/min, P < 0.05) and after exercise (495 +/- 16 vs. 592 +/- 27 beats/min, P < 0.05). Minimal HR was not different between genotypes. HR variability (SD of RR intervals) was reduced by 30% (P < 0.05) in TG compared with WT mice. Pertussis toxin (n = 4 pairs, 150 microg/kg ip) reversed bradycardia after 48 h. TG mice showed first-degree AV nodal block (PQ interval: 42 +/- 2 vs. 37 +/- 2 ms, P < 0.05), which was diminished but not abolished by pertussis toxin. Isolated Langendorff-perfused TG hearts developed spontaneous atrial arrhythmias (3 of 6 TG mice vs. 0 of 9 WT mice, P < 0.05). In conclusion, A1AR regulate sinus nodal and AV nodal function in the mammalian heart in vivo. Enhanced expression of A1AR causes sinus nodal and AV nodal dysfunction and supraventricular arrhythmias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app