Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Decreased neural damage after spinal cord injury in tPA-deficient mice.

Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin. It plays an important role in the nervous system, including the processes of neuronal migration, neurite outgrowth, and neuronal plasticity. tPA has also been suggested to have a role in several neuropathological conditions, such as cerebral ischemia, seizures, and demyelinating diseases. To investigate the role of tPA in spinal cord injury, wild-type mice and mice with homozygous tPA deficiency (tPA(-/-) mice) were subjected to spinal cord contusion and the differences of hindlimb function, electrophysiological changes, and histopathological changes were assessed for 6 weeks. Functional recovery was greater in tPA(-/-) mice than in wild-type mice throughout the observation period. The time course of myoelectric motor-evoked potentials supported the hindlimb functional findings. Histological examination showed that injured areas were smaller in tPA(-/-) mice than wild-type mice on Luxol fast blue staining or myelin basic protein and neurofilament protein immunostaining at 6 weeks after contusion. Electron microscopy showed that the white matter was better preserved in tPA(-/-) mice than in wild-type mice. The expression of tPA protein was widespread on the first day after contusion and this expression was detected for at least a week. Activation of microglia/macrophages and apoptotic cell death were significantly reduced in tPA(-/-) mice after contusion. This study shows that neural damage is decreased in tPA(-/-) mice after spinal cord injury. Suppression of tPA production may help to decrease secondary injury after spinal cord contusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app