JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons.

Competition and cooperation between type II and type III receptor protein tyrosine phosphatases (RPTPs) regulate axon extension and pathfinding in Drosophila. The first step to investigate whether RPTPs influence axon growth in the more complex vertebrate nervous system is to identify which neurons express a particular RPTP. We studied the expression of mouse PTPRO, a type III RPTP with an extracellular region containing eight fibronectin type III domains, during embryogenesis and after birth. Mouse PTPRO mRNA is expressed exclusively in two cell types: neurons and kidney podocytes. Maximal expression in the brain was coincident with mid to late gestation and axonogenesis in the brain. We cloned two cDNAs, including a splice variant without sequence coding of 28 amino acids within the juxtamembrane domain that was found mostly in kidney. In situ hybridization detected mPTPRO mRNA in the cerebral cortex, olfactory bulb and nucleus, hippocampus, motor neurons, and the spinal cord midline. In addition, mPTPRO mRNA was found throughout dorsal root, cranial, and sympathetic ganglia and within kidney glomeruli. Mouse PTPRO mRNA was observed in neuron populations expressing TrkA, the high-affinity nerve growth factor receptor, or TrkC, the neurotrophin-3 receptor, and immunoreactive mPTPRO and TrkC colocalized in large dorsal root ganglia proprioceptive neurons. Our results suggest that mPTPRO is involved in the differentiation and axonogenesis of central and peripheral nervous system neurons, where it is in a position to modulate intracellular responses to neurotrophin-3 and/or nerve growth factor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app