JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Numerical modeling of oxygen exclusion experiments of anaerobic bioventing.

A numerical and experimental study of transport phenomena underlying anaerobic bioventing (ABV) is presented. Understanding oxygen exclusion patterns in vadose zone environments is important in designing an ABV process for bioremediation of soil contaminated with chlorinated solvents. In particular, the establishment of an anaerobic zone of influence by nitrogen injection in the vadose zone is investigated. Oxygen exclusion experiments are performed in a pilot scale flow cell (2 x 1.1 x 0.1 m) using different venting flows and two different outflow boundary conditions (open and partially covered). Injection gas velocities are varied from 0.25 x 10(-3) to 1.0 x 10(-3) cm/s and are correlated with the ABV radius of influence. Numerical simulations are used to predict the collected experimental data. In general, reasonable agreement is found between observed and predicted oxygen concentrations. Use of impervious covers can significantly reduce the volume of forcing gas used, where an increase in oxygen exclusion efficiency is consistent with a decrease in the outflow area above the injection well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app