Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Plant water uptake by hard red winter wheat (Triticum aestivum L.) genotypes at 2 degrees C and low light intensity.

BMC Plant Biology 2002 September 27
BACKGROUND: Hard red winter wheat (HRWW; Triticum aestivm L.) plants from genotypes selected in the Northern Great Plains of the U.S. have less tissue water after exposure to cool autumn temperatures than plants from the Southern Great Plains. It is generally assumed that the reduced tissue water content of northern compared to southern cultivars is due to an impedance to water uptake by northern plants as a result of the low autumn temperatures. We hypothesize that if low temperature impedes water uptake then less soil water would be removed by northern than by southern-selected cultivars. This hypothesis was tested by comparing plant water uptake of a northern (FR) and a southern (FS) cultivar in relation to their foliage water content at 2 degrees C.

RESULTS: At 2 degrees C foliage water content of FR plants decreased more rapidly than that of FS plants, similar to field results in the fall. During 6 wk, foliage water content of FR plants decreased 20 to 25% of the pre-treatment value, compared to only 5 to 10% by FS plants. Plant water uptake was about 60 g H2O*g FDW(-1) by FS plants, while FR plants maintained plant water uptake in excess of 100 g H2O*g FDW(-1) during the 6 wk period at 2 degrees C. When four other northern genotypes of equal freeze resistance were studied, foliage water content and plant water uptake change were similar to FR plants.

CONCLUSION: In these northern-selected HRWW cultivars foliage water content reduction resulting from cold acclimation is not due to impedance to plant water uptake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app