EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

In vitro evaluation of phosphonylated low-density polyethylene for vascular applications.

The use of catheters for vascular applications is often complicated by the development of friction between the catheter material and the vessel wall, which leads to endothelial cell removal and intimal lesions. Phosphonylation, a chemical surface treatment, has been proposed as a means of increasing the hydrophilicity of low-density polyethylene (LDPE), a commonly used catheter material, in efforts to impart lubricity to the material and reduce vascular tissue damage. In an in vitro tribological study, phosphonylated LDPE produced a lower coefficient of friction and allowed greater retention of endothelial cells on vessels as compared to untreated LDPE when the materials were reciprocated against normal porcine aorta. Chemical characterizations of the LDPE before and after friction testing involving Fourier transform infrared and energy-dispersive X-ray (EDX) confirmed the phosphorus content on phosphonylated LDPE. Election spectroscopy for chemical analysis (ESCA) and atomic force micrscope (AFM) analyses verified that proteins initially adsorb to both the phosphonylated and untreated LDPE surfaces and that the proteins interfere with water to lubricate the surfaces. However, with repeated friction, proteins are removed from the surface and hydrophilicity, as imparted by phosphonylation, becomes a principal factor in the lubrication process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app