COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The selectively bred high alcohol sensitivity (HAS) and low alcohol sensitivity (LAS) rats differ in sensitivity to nicotine.

BACKGROUND: Studies in rodents selectively bred to differ in alcohol sensitivity have suggested that nicotine and ethanol sensitivities may cosegregate during selective breeding. This suggests that ethanol and nicotine sensitivities may in part be genetically correlated.

METHODS: Male and female high alcohol sensitivity (HAS), control alcohol sensitivity, and low alcohol sensitivity (LAS) rats were tested for nicotine-induced alterations in locomotor activity, body temperature, and seizure activity. Plasma and brain levels of nicotine and its primary metabolite, cotinine, were measured in these animals, as was the binding of [3H]cytisine, [3H]epibatidine, and [125I]alpha-bungarotoxin in eight brain regions.

RESULTS: Both replicate HAS lines were more sensitive to nicotine-induced locomotor activity depression than the replicate LAS lines. No consistent HAS/LAS differences were seen on other measures of nicotine sensitivity; however, females were more susceptible to nicotine-induced seizures than males. No HAS/LAS differences in nicotine or cotinine levels were seen, nor were differences seen in the binding of nicotinic ligands. Females had higher levels of plasma cotinine and brain nicotine than males but had lower brain cotinine levels than males.

CONCLUSIONS: Sensitivity to a specific action of nicotine cosegregates during selective breeding for differential sensitivity to a specific action of ethanol. The differential sensitivity of the HAS/LAS rats is due to differences in central nervous system sensitivity and not to pharmacokinetic differences. The differential central nervous system sensitivity cannot be explained by differences in the numbers of nicotinic receptors labeled in ligand-binding experiments. The apparent genetic correlation between ethanol and nicotine sensitivities suggests that common genes modulate, in part, the actions of both ethanol and nicotine and may explain the frequent coabuse of these agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app