Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Review
Add like
Add dislike
Add to saved papers

Tissue plasminogen activator as a modulator of neuronal survival and function.

The tissue plasminogen activator (tPA)/plasmin proteolytic system has been implicated in both physiological and pathological processes in the mammalian brain. The physiological roles include facilitating neurite outgrowth and pathfinding. The pathological role involves mediating a critical step in the progression of excitotoxin-induced neurodegeneration. Mechanistically, tPA appears to function through two pathways. The first pathway proceeds via its well established ability to convert plasminogen into plasmin. Plasmin then either promotes neuronal death via both the degradation of the extracellular matrix and the establishment of chemoattractant gradients for microglia, or facilitates neurite outgrowth through the processing of extracellular matrix proteoglycans. The second pathway for tPA does not involve its proteolytic activity: rather tPA functions as an agonist to stimulate a cell-surface receptor on microglia (the macrophage-like immunocompetent cells of the central nervous system) and results in their activation. Once activated after neuronal injury, microglia contribute to the ensuing neurodegeneration. Using tPA as a link between neurons and microglia, we are focusing on understanding their communication and interactions in the normal and diseased central nervous system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app