COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Role of the glutamic and aspartic residues in Na+-ATPase function in the ZrENA1 gene of Zygosaccharomyces rouxii.

The effect of replacement of negatively charged amino acid residues on the function of Na+ transport proteins of the salt-tolerant yeast Zygosaccharomyces rouxii was examined by heterologous expression of mutant proteins in a strain of Saccharomyces cerevisiae, RH16.6, that lacks native Na+-ATPase activity due to null mutations of ENA1, ENA2, ENA3, and ENA4. Mutants of Na+/H+ antiporter gene (ZrSOD2) and Na+-ATPase gene (ZrENA1) of Z. rouxii were generated by site-directed mutagenesis. The significance of two aspartic residues arranged in tandem (D265 and D266) was demonstrated in Z. rouxii Na+/H+ antiporter. Some Z. rouxii Na+-ATPase mutant genes, namely E778A, D852A, and E981A present in the transmembrane domains (TMDs) and D736A, D743A, D748A, D749A, D759A, and D760A present in the cytoplasmic space were constructed. A lower level of salt tolerance was bestowed by the mutant genes D852A and E981A present in TMDs and D748A and D749A present in cytoplasmic space, compared with the wild-type gene (ZrENA1).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app