Add like
Add dislike
Add to saved papers

Oxygen uptake kinetics during treadmill running across exercise intensity domains.

The purpose of the present study was to examine comprehensively the kinetics of oxygen uptake (VO2) during treadmill running across the moderate, heavy and severe exercise intensity domains. Nine subjects [mean (SD age, 27 (7) years; mass, 69.8 (9.0) kg; maximum VO2, VO2max, 4,137 (697) ml x min(-1)] performed a series of "square-wave" rest-to-exercise transitions of 6 min duration at running speeds equivalent to 80% and 100% of the VO2 at lactate threshold (LT; moderate exercise); and at 20%, 40%, 60%, 80% and 100% of the difference between the VO2 at LT and VO2max (delta heavy and severe exercise). Critical velocity (CV) was also determined using four maximal treadmill runs designed to result in exhaustion in 2-15 min. The VO2 response was modelled using non-linear regression techniques. As expected, the amplitude of the VO2 primary component increased with exercise intensity [from 1,868 (136) ml x min-( 1) at 80% LT to 3,296 (218) ml x min-(1) at 100% delta, P < 0.05]. However, there was a non-significant trend for the "gain" of the primary component to decrease as exercise intensity increased [181 (7) ml x kg(-1) x km(-1) at 80% LT to 160 (6) ml x kg(-1) x km(-1) at 100% delta]. The time constant of the primary component was not different between supra-LT running speeds (mean value range = 17.9-19.1 s), but was significantly shorter during the 80% LT trial [12.7 (1.4) s, P < 0 .05]. The VO2 slow component increased with exercise intensity from 139 (39) ml x min(-1) at 20% delta to 487 (57) ml x min(-1) at 80% delta (P < 0.05), but decreased to 317 (84) ml x min(-1) during the 100% delta trial (P < 0.05). During both the 80% delta and 100% delta trials, the VO2 at the end of exercise reached VOmax [4,152 (242) ml x min(-1) and 4,154 (114) ml x min(-1), respectively]. Our results suggest that the "gain" of the primary component is not constant as exercise intensity increases across the moderate, heavy and severe domains of treadmill running. These intensity-dependent changes in the amplitudes and kinetics of the VO2 response profiles may be associated with the changing patterns of muscle fibre recruitment that occur as exercise intensity increases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app