JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Upregulation of hepatic LDL transport by n-3 fatty acids in LDL receptor knockout mice.

We determined the effects of dietary n-6 and n-3 polyunsaturated fatty acids (PUFA) on parameters of plasma lipoprotein and hepatic lipid metabolism in LDL receptor (LDLr) knockout mice. Dietary n-3 PUFA decreased the rate of appearance and increased the hepatic clearance of IDL/LDL resulting in a marked decrease in the plasma concentration of these particles. Dietary n-3 PUFA increased the hepatic clearance of IDL/LDL through a mechanism that appears to involve apolipoprotein (apo)E but is independent of the LDLr, the LDLr related protein (LRP), the scavenger receptor B1, and the VLDLr. The decreased rate of appearance of IDL/VLDL in the plasma of animals fed n-3 PUFA could be attributed to a marked decrease in the plasma concentration of precursor VLDL. Decreased plasma VLDL concentrations were due in part to decreased hepatic secretion of VLDL triglyceride and cholesteryl esters, which in turn was associated with decreased concentrations of these lipids in liver. Decreased hepatic triglyceride concentrations in animals fed n-3 PUFA were due in part to suppression of fatty acid synthesis as a result of a decrease in sterol regulatory element binding protein-1 (SREBP-1) expression and processing. In conclusion, these studies indicate that n-3 PUFA can markedly decrease the plasma concentration of apoB-containing lipoproteins and enhance hepatic LDL clearance through a mechanism that does not involve the LDLr pathway or LRP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app