Add like
Add dislike
Add to saved papers

The radiobiology of DNA strand breakage.

The yield of single-strand breaks in lambda DNA within lysogenic host bacteria was measured after exposure to 4-MeV electrons (50 msec) and rapid transfer (45 msec) to alkaline detergent. In nitrogen anoxia the yield was 1.2 X 10(-12) DNA single-strand breaks per rad per dalton, and under full oxygenation the yield increased to 5 X 10(-12) breaks per rad per dalton. A search for the presence of fast repair of strand breaks operating within a fraction of a second. Strand breaks produced in the persence of oxygen were repaired in 30-40 sec, while breaks produced under anoxia were rejoined even slower. A functional product from the po[A] gene was needed for the rejoining of the broken molecules. Intermediate levels of DNA strand breakage seen at low concentrations of oxygen are dependent on the concentration of cellular sulfhydryl compounds, suggesting that in strand breakage oxygen donors compete for reactions with radiation-induced transients in the DNA. Intercomparisons of data on radiation-induced lethality of cells and single-strand breaks in episomal DNA allow the distinction between two classes of radiation-induced radicals, R-1 and R-2, with different chemical properties; R-1 reacts readily with oxygen and N-oxyls under formation of potentially lethal products. The reactivity of oxygen in this reaction is 30-40 times higher than that of TMPN. R-2 reacts 16 times more readily that R-1 with oxygen under formation of single-strand breaks in the DNA. R-2 does not react with N-oxyls.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app