Add like
Add dislike
Add to saved papers

Laser-induced shock waves enhance sterilization of infected vascular prosthetic grafts.

BACKGROUND AND OBJECTIVE: Bacteria that cause infection of vascular prosthetic grafts produce an exopolysaccharide matrix known as biofilm. Growth in biofilms protects the bacteria from leukocytes, antibodies and antimicrobial drugs. Laser-generated shock waves (SW) can disrupt biofilms and increase drug penetration. This study investigates the possibility of increasing antibiotic delivery and sterilization of vascular prosthetic graft.

STUDY DESIGN/MATERIALS AND METHODS: Strains of Staphylococcus epidermidis and S. aureus were isolated from infected prosthetic grafts obtained directly from patients. Dacron grafts were inoculated with the isolated bacteria, which were allowed to form adherent bacterial colonies. The colonized grafts underwent the following treatments: (a) antibiotic (vancomycin) alone; (b) antibiotic and SW (c) saline only; and (d) saline and SW. Six hours after treatment, the grafts were sonicated, the effluent was cultured and the colony forming units (CFU) were counted.

RESULTS: CFU recovered from control grafts colonized by S. epidermidis were comparable: saline, 3.05 x 10(8) and saline+SW 3.31 x 10(8). The number of S. epidermidis CFU diminished to 7.61 x 10(6) after antibiotic treatment but the combined antibiotic+SW treatment synergistically decreased CFU number to 1.27 x 10(4) (P<0.001). S. aureus showed a higher susceptibility to the antibiotic: 2.26 x 10(6) CFU; antibiotic +SW treatment also had an incremental effect: 8.27 x 10(4) CFU (P<0.001).

CONCLUSIONS: This study demonstrates that laser-generated shock waves have no effects alone, but can enhance the effectiveness of antibiotics against bacteria associated with prosthetic vascular graft biofilms, suggesting that this treatment may be of value as adjunctive therapy for prosthetic graft infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app