Add like
Add dislike
Add to saved papers

Removal of DNA-bound proteins by DNA twisting.

We present a simple model of how local torsional stress in DNA can eject a DNA-bound protein. An estimate of the torque tau(*) required to eject a typical DNA-bound protein is made through a two-state model of the equilibrium between the bound and unbound states of the protein. For the familiar case of a nucleosome octamer bound to double-stranded DNA, we find this critical torque to be approximately equal to 9k(B)T. More weakly bound proteins and large (approximately equal to kilobase) loops of DNA are shown to be destabilized by smaller torques of only a few k(B)T. We then use our model to estimate the maximum range R(max) at which a protein can be removed by a transient source of twisting. We model twist strain propagation along DNA by simple dissipative dynamics in order to estimate R(max). Given twist pulses of the type expected to be generated by RNA polymerase and DNA gyrase, we find R(max) approximately equal to 70 and 450 bp, respectively, for critical torques of approximately equal to 2k(B)T.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app