Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Nonenzymatic template-directed synthesis on oligodeoxycytidylate sequences in hairpin oligonucleotides.

We have developed a novel method for studying template-directed synthesis in hairpin oligonucleotides. An unpaired segment at the 5'-terminus of the hairpin acts as an intramolecular template for the extension of the paired 3'-terminus. Products are analyzed by denaturing gel electrophoresis of [32P]-labeled hairpins. Using this system, we have studied the synthesis of oligoguanylates on an oligodeoxycytidylate template. We find that guanosine 5'-phosphoro(2-methyl)imidazolide adds efficiently to a terminal riboguanylate residue at temperatures in the range 0-37 degrees C but not at 50 degrees C. At 0 degree C, the half-time for addition of the first G residue is about 3 h, and the reaction rate is independent of pH in the range 6.5-8.0. The first addition reaction results in the formation of a predominantly 3'-5'-internucleotide bond. When the 3'-terminal riboguanylate residue is placed by a deoxyguanylate residue, the half-time for the first addition increases from about 3 to about 30 h.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app