Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice.

(6R)-5,6,7,8-Tetrahydro-biopterin (H(4)B) is essential for the catalytic activity of all NO synthases. The hyperphenylalaninemic mouse mutant (hph-1) displays 90% deficiency of the GTP cyclohydrolase I, the rate-limiting enzyme in H(4)B synthesis. A relative shortage of H(4)B may shift the balance between endothelial NO synthase (eNOS)-catalyzed generation of NO and reactive oxygen species. Therefore, the hph-1 mouse represents a unique model to assess the effect of chronic H(4)B deficiency on endothelial function. Aortas from 8-week-old hph-1 and wild-type mice (C57BLxCBA) were compared. H(4)B levels were determined by high-performance liquid chromatography and NO synthase activity by [(3)H]citrulline assay in homogenized tissue. Superoxide production by the chemiluminescence method was measured. Isometric tension was continuously recorded. The intracellular levels of H(4)B as well as constitutive NO synthase activity were significantly lower in hph-1 compared with wild-type mice. Systolic blood pressure was increased in hph-1 mice. However, endothelium-dependent relaxations to acetylcholine were present in both groups and abolished by inhibition of NO synthase with N(G)-nitro-L-arginine methyl ester as well. Only in hph-1 mice were the relaxations inhibited by catalase and enhanced by superoxide dismutase. After incubation with exogenous H(4)B, the differences between the 2 groups disappeared. Our findings demonstrate that H(4)B deficiency leads to eNOS dysfunction with the formation of reactive oxygen species, which become mediators of endothelium-dependent relaxations. A decreased availability of H(4)B may favor an impaired activity of eNOS and thus contribute to the development of vascular diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app