Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

NBD-labeled phosphatidylcholine and phosphatidylethanolamine are internalized by transbilayer transport across the yeast plasma membrane.

Traffic 2001 January
The internalization and distribution of fluorescent analogs of phosphatidylcholine (M-C6-NBD-PC) and phosphatidylethanolamine (M-C6-NBD-PE) were studied in Saccharomyces cerevisiae. At normal growth temperatures, M-C6-NBD-PC was internalized predominantly to the vacuole and degraded. M-C6-NBD-PE was internalized to the nuclear envelope/ER and mitochondria, was not transported to the vacuole, and was not degraded. At 2 degrees C, both were internalized to the nuclear envelope/ER and mitochondria by an energy-dependent, N-ethylmaleimide-sensitive process, and transport of M-C6-NBD-PC to and degradation in the vacuole was blocked. Internalization of neither phospholipid was reduced in the endocytosis-defective mutant, end4-1. However, following pre-incubation at 37 degrees C, internalization of both phospholipids was inhibited at 2 degrees C and 37 degrees C in sec mutants defective in vesicular traffic. The sec18/NSF mutation was unique among the sec mutations in further blocking M-C6-NBD-PC translocation to the vacuole suggesting a dependence on membrane fusion. Based on these and previous observations, we propose that M-C6-NBD-PC and M-C6-NBD-PE are transported across the plasma membrane to the cytosolic leaflet by a protein-mediated, energy-dependent mechanism. From the cytosolic leaflet, both phospholipids are spontaneously distributed to the nuclear envelope/ER and mitochondria. Subsequently, M-C6-NBD-PC, but not M-C6-NBD-PE, is sorted by vesicular transport to the vacuole where it is degraded by lumenal hydrolases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app